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Abstract

- T~- One of the concerns of the compiler writer is the quality of object programs produced
by the compiler, and in particular their performance at execution time. A survey of
methods for measuring this performance, and experiments with the use of those
methods, is presented. We examine two general categories of evaluation: comparative
evaluation, in which benchmark programs are run on groups of language systems; and
analytic evaluation, in which a single system is measured in terms determined by its
own structure. Besides surveying the results of various evaluation experiments, we
present in detail the results of a series of experiments on a particular language system
(PDPI1 ALGOL 68-S).
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Introduction
The overall performance of a computer system depends not only on the design and

configuration of the system itself , but also on the nature of the programs which run on
it. If, as with many systems , almost all user programs are processed by one of two or
three compilers before being run, changes in the quality of object programs produced
by those compilers can have noticeable effects on system performance. Any means of
assessing or analyzing the performance of object programs , therefore , can be
extremel y useful to the compiler writer. This paper surveys the effor ts which have
been made at doing such analysis.

Most language processing systems consist of two phases: a “translator ” and an
•‘interpreter ”. The interpreter may be fairly close to the instruction interpreter of the
computer on which it runs, in which case we call the translator a compiler. In any case
the performance of the system as a whole depends on three factors: the performance
of the translator itself; the performance of the interpreter itself; and the quality of the
translation, i.e. the degree to which the program output by the translator makes the
best possible use of the interpreter. For most systems , either the firs t of these
factors is very important, or the last two are , but not all three. We will concern
ourselves with the last two factors , i.e. with systems in which most of the processor
time spent on a program is in executing the translated program.

Except for assembler systems , it is almost never true that the interpreter is exactly
the instruction interpreter of the computer. The difference between the “virtual
computer ” for which the trans lator generates code, and the “real computer ” which it
may resemble, is defined partly by the set of utility subroutines used in the
interpreter (e.g. subroutines to do inputfoutput , or to do dynamic storage allocation),
and partly by a set of conventions which are enforced and obeyed by the code output
by the translator (e.g. subroutine linkage conventions, or register and memory
allocation conventions). We will refer to this set of subroutines and conventions as the
“run-time system ” of the language system. One of the compiler writer ’s concerns is
with the efficiency of the virtual computer so defined, relative to that of the real
computer on which it runs.

As with other (hardware and software) systems , we can study the behavior of
language support systems in two ways. If we directly compare the performance of
one system with that of another with similar input, we are doing comparative
evaluation of the systems; if we measure the performance of a system “on its own
terms ”, without reference to other systems, we are doing anaLytic evaluation (see (1]).
We will use these two categories to classify the performance measurement studies that
we wifl discuss, because the methods and goals of the two types of evaluation are
fundamentally different. We will see that many techniques have been used to try to
get a variety of kinds of information about the behavior of language run-time systems;
and we wilt try to impose order and direction on the resulting chaos.
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1. Comparat ive evaluation

Detailed comparison between language systems , in the measures of execution
performance , requires that identical “benchmark” programs be run on them. This is a
bare minimum requirement; it often happens that even this does not suffice to allow
meaningful comparisons between program runs:

- If the language systems run in dilferent environments (different computers , or
even different operating systems on the same computer ), it is difficult to separate
the effect of the environment on performance from the effect of the language
system software. We shall see that some attempts have been made to do this by
purely statistical means, i.e. to assign to every environment a set of multiplicative
factors that describe its effect on the performance of various types of
programming constructs. These methods are of limited accuracy and usefulness ,
however.

- Even within the same environment , completely different organizations of run-time
action may render nearly meaningless the comparison of execution times for
certain types of progr ams. Consider , for instance, the allocation of space for
variables. On some ALGOL 60 systems , all allocation of local static storage for a
procedure is done at procedure entry; on others , allocatio n of storage local to
each block is done at entry to that block. Clearl y the comparison of times
required for block entry and exit between systems of the two dillerent types is
not very useful. Even for the simplest of benchmark programs , it is sometimes
not possible to avoid companng apples w ith oranges.

At the same time, the “bare minimum” requirement given above is not quite a
minimum. Valid comparisons can be made between language systems which im plement
different languages; in this case the benchmark programs used will be different from
each other , hopefully in small ways. Such comparisons are fraught with traps for the
unwary:

- Different languages are apt to be similar in many ways but to have comp letely
different capabilities in other ways. We will see examples of this later; it means
that the transcription of a benchmark program from one language to another may
not be strai ghtforward , and may be a knotty problem indeed.

- Patterns of use of language constructs and features are dependent on the
languages themselves. A prpgram whose usefulness as a benchmark arises from
its resemblance to a “typical” user program may lose its typicalness when
transcril,ed to another language.

Finally we should note that the whole business of timing the execution of a program
is not trivial and that a number of factors may render invalid times which are recorded
in an incautious manner:

- Though most general-purpose computer systems include a clock with which to

2
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time program execution, and instructions or operating system calls to read or
reset the clock, these clocks are of highly vary ing grain size. Some are (claimed
to be) accurate to within a few microseconds; others cannot be relied on to within
less than a second. If we are interested in the execution times of small sections
of code, such as individual subroutines or even individual statements , we must
often either arrange for the code to be executed thousands or millions of times in
a loop, or rely on the computer system ’s published instruction timings and our
knowledge of the machine code that is executed. We shall see that both these
methods have their own disadvantages.

- The time taken for identical program runs on the same system may vary,
especially on multiprogramming systems , because of phenomena such as cycle
stealing for I/O transfers going on concurrently with the program, or interrupts ,
in either case due to activity not under control of the program being timed. Many
if not most of the clocks available in various systems do not discount such lost
time from the time recorded as taken by the program in question. One method of
getting around this problem is simp ly to run the program several times , and use
the smallest of the recorded execut.ion times-as the “official” one. -~ But -this -is- not— —-
an entirely satisfactory solution.

In spite of the formidable problems outlined above, several interesting comparative
studies have been done, some involving several dozen language systems. We will
examine the methodologies used in these studies, and in particular the design of the
benchmark programs and the purposes to which they were directed.

1.1. Basic statements

Wichmann ((2],(3],[4]) uses a benchmark program which attempts to study at once a
wide range of characteristics of Algol 60 systems. This is done by timing a set of
“basic statements ”. A complete description of this method is in order since it is based
on a view of programming language sys tems that is popular and has been widely used
in other studies ((12),[15],[25)), in spite of its rather shaky validity.

Wichmann has designated a group of simple Algol 60 statements to be “basic ”. The
comp lete list of these is found in figure 1 in Appendix A. An attempt has been made
to make this set of statements complete, in this sense: that if one could get average
times for each statement in the set for one particular system, one would comp letely
understand the timing behavior of the system, i.e. one could make gooa estim ates of
the time taken for whole programs running on that system.

There are some obvious and probably deliberate Omissi ons of Algol 60 features
from the list , e.g. call-by-name parameters , own variables and own arrays. There were
also some individual statements that were chosen poorly, as Wichmann points out; for -
instance, for the statement

.2 (1, 1]:~ 
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the address calculation necessary to do the array access was done at cor,~pile time in
systems and at run time in others , causing an “apples vs. oranges ” comparison between
systems that could easily have been avoided by the use of non-constant subscripts.
(Because of the large number of systems on which this experiment was done, it was
not practical , for reasons of compatibility, to simply change the list of basic statements
to correc t such minor deficiencies).

There is a more fundamenta problem, however , with the underlying assumption: that
the action of the system during execution of a program can be divided neatl y and
charged to the actions of the separate statements. This is probably the case f or many
Fortran systems; but for systems implementing more sophisticated languages, including
Algol 60, it frequently fails in significant ways to describe reality, and performance
models based on this assumption are bound to be misleading.

The problem is not confined to the so-called “optimizing compiler ” sys t ems , in which
statements are combined with one another or moved out of .Joops, and e.~prcssions may
be discovered to be redundant and not calculated . (In fact Wichmann acknowledges
the problems inherent in running the basic statement benchmark program on these
systems , and has designed a different benchmark program in response to this issue;
this is discussed in a later section). Even systems in which no optimization is done
frequently carry on activities whose costs cannot be fairly assigned to particular
statements or even groups of statements. For instance:

— In many systems , all the code for the declarations within a procedure is at the
beginning of the procedure, even though declarations are allowed elsewhere.
Also, some systems process groups of declarations at once, even rearrang ing the
order of consecutive declarations , e.g. processing a group of declarations of
integers, followed by a group of declarations of reals , etc. although the integer
and real declarations were interspersed in the source program. Clearly it is not
very useful to try to isolate the effect of a single declaration in such a system.

- In a system which includes a dynamic storage allocator at run time, the behavior
of the allocator is seldom correlated strong ly with statement boundaries and
characteristics. For instance , coalescence of available free storage , or even
compaction (by rearrangement in core) of storage blocks which are in use, are
likely to be all-at-once, time-consuming operations which are performed at
seeming ly random, unpredictable points during program execution.

- Some systems attempt to avoid copying of large blocks of storage , such as arrays ,
back and forth by keeping track at execution time of how they are used. For
instance, if an array is to be returned as the result of a procedure call, it may be
possible to leave it in place on the control stack as the stack is popped, not
copying ii downward unless it proves necessary to do so ((5)). In this situation,
the construct which causes the array to be cop ied (such as a subsequent
procedure call) is not the construct to which the copy ing should be charged (i.e.
the orig inal procedure return), rendering more difficult the neat separation of the
costs of constructs.

~
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Ne~vertheless the “basic st atements ” benchmark program has become extremely
popular and has been run on about 80 different Algol 60 sys tems (including a few
A~go) 68 and Pascal systems). The program times each separate basic statement by
execu ting it in a loop; the number of iterations of the loop and the time-clock reading
statements before and after it are supplied by the person who runs the program on
any particular system.

The loop is ordinarily a for loop whose body is a single instance of the statement in
question. This pattern may be modified for either of two reasons:

- The execution time of the statement may be comparable to, or even considerably
less than, the execution overhead of the loop statement itself. In this case no
number of iterations is large enough to give a re liable timing; to remedy this the
loop body is changed to consist of several repetitions of the statement.

- “Optimizing comp iler” systems may move the code generated for the basic
statement out of the loop, or (in the case described above) recognize that -all-but .
the first of the repetitions of the statement are redundant, and not generate code
for them. The system tester must find ad hoc ways of getting around these
problems; for instance, most such systems allow optimization to be “turned off”
over small sections of the program or even the entire program.

From the time taken for each loop, the time taken for the loop with a null body is
subtracted, yielding an average execution time for the statement.

This ~aw data is interesting enough in itself , both because it can help to pinpoint
weaknesses in the performance of a system, and because it can in a vague way give us
an idea of the relative merits of different language system organizations and the
principles (if any) on which they are based. Wichrnann has done some further analysis
of the data along statistical lines which, though admittedly somewhat unreliable, are
interesting because of the large number of systems involved.

— Making the assumption that the time taken for statement i on system j is the
product of two factors , one of which depends only on i and the other only on j ,
ho computes the set of factors using a least-squares fit. Even more interesting
than the factors themselves are the residuals R~1, the ratios between the expected
times based on the model and the actual times. Values of these which are greatly
different from unity indicate, rather more clearly than simple examination of the
raw data, which features of an implementation are unusually slow or fast relative
to the implementation as a whole. Wichmann also investigates the pairwise
correlation coefficients of the R~1’s, arriving at graphs of correlations between
statements and between systems, which are of value as a curiosity if they are not
directly useful in aiding understanding of the systems involved.

— In an earlier study, Wichmann ((6]) gathered some statistics on the relative
frequencies of execution of the various basic statements , enabling the direct
comparison of the set of statement times from one system ~?ith those of another ,
by giving weights to the basic statements and forming a weighted aver ag~ for
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each system. While it is not clear that this weighted average can be regarded as
a valid measure of system performance , because of the objections raised earlier ,
or whether any meaning is left at all when all of the performance data about a
system are squeezed into a single number , it is probable that this figure too can
he used as an order-of -magnitude estimator of the “average ” speed of programs
running on a particular system.

Appendix A presents the results of running the basic statements benc hmar k on a
particular s y stem, CMU Al gol 68, with some discussion of the relevance of the program
to Al gol 68, and the characteristics of the system which are brought to light by the
ci at a.

1.2. Procedure cafling overhead

The very same Wichmann mentioned in the previous section reports ([7),[8)) on
another very popular benchmark program, intended to provide insight into the
overheads of procedure call and return in Algol-like languages. The program is a
version of Ackermann’s function which has a number of advantages as a benchmark: it
is small; it uses almost no interesting features of the language other than the
procedure calling mechanism; its behavior , in terms of the require d stack size, the
number of procedure calls that take place , and the relative frequencies of execut ion of
each conditional branch of the code, has been exactly characterized ((9)) in terms of
the parameters passed to it, making the study of its behavior much more
straightforward.

Wichmann presents four fi~ures for each program run: the time taken per call (in
microseconds); the average number of instructions executed per call (this was deduced
from object code listings); the number of words of stack growth per call; and the size
in bytes of the object code for the whole procedure. In this case evidently the actual
running of the program, to o6tain the first figure, is of considerabl y less interest than
the analysis of the object code to discover just why the four fi gures arc what they
are. This is not surprising in view of the wide variety of procedure calling mechanisms
used; to extend the metaphor of “apples vs. oranges ”, the 60 systems on which this
program was run represent , not 60 varieties of apples , but perhaps 60 different
species of fruit. The calling conventions can be ca tegorized along at least five
dimensions , as described by Wichmann:

- Nature and extent of stack overflow checking. Systems may check this in
software at procedure entry, or place the stack so that there will be a hardware
trap when it exceeds its limit. Of the former systems , som e allow for dynamic
storage allocat ion by performing garbage collection if the stack overflows.

- Environment setup at procedure entry. Some languages allow addressing of only
local var iablcs and static (global) variables; some allow addressing of non-local
non—static variables and thus require maintenance of a display. (Also , there are
many possible implementations of a display).

6
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— Dynamic stack storage. anguages which allow declaration of storage whose size
is not known until execution (e.g. dynamic arrays) require two stack pointers to
be maintained; more restricted languages require only one.

- Parameter passing conventions. In some systems , all parame ters are passed by
reference; in others , the parameters are passed by value (all of them can he so
passed t o this procedure). Some systems created thunks for the parameters
anyway.

— Library subroutines. Various low-level support functions , up to and including the
entire procedure call/ return mechanism, are coded as calls to library subroutines
by various different systems. 

-

In view of the qualitative differences betwef n even the best systems it is
remarka ble that comparisons of any interest can be made between them; but in fact
the comparisons of various systems all running on the same machine are fascinati ng
and instructive and -- who knows? -- perhaps provided useful guidance to t h e
implemen tors of some of the systems tested.

1.3. Other studies

Boom and de Jong ((103) used several different benchmark programs , t~ compare s ix
systems involving four different languages (Pascal , Al gol 68, A lgol 60, and Fortran) on
the same computer (the CDC Cyber 73). Tn addition to the two benchmark programs
by Wichrnann, they used two programs of their own devising, which we wi ll comment
on.

The first of these was a program to symbolically compute and print out the first
hundred and f ifty cyctotom ic polynomials. It is difficult to deduce from the report just
w hy this program was selected as a benchmark. The authors give one clue: that it is

a real program, at least one version of which had been originally wri tten for a
purpose other than that of testing the compiler ”. There are other peculiarities of the
program that make it suitable for the measurements which the authors had in mind.
For each program run, they measured the CP (central processor) time required for the
whole run, the CP time required f or the calculation of coefficients of the polynomials,
and the CP time required for format ting and printing of the polynomials. We suspec t
that one of the reasons the program was chosen is that it is organized so that these
last two times are easily separable. (The first half of the program computes the
coefficients , and the second half formats and prints them). (Other measurements were
made, such as the CP time required to compile the program, but these were not
measurements of the run-time sys tem and are not of direct interest to us).

The program was run several times on each system, once for each possible
combination of compiler options which could affect performance. The most common
option available was for subscript checking of array accesses , but some of the systems
had an additional option involving miscellaneous object code optimizations as well. it

7
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seems that array subscript checking is not done in the same way by all the different
systems:

- Some of them check that every subscript in a multidimensional access is within its
hounds;

- Some of them check only the offset calculated from all the subscri pts ~nd
dimensions of the array; if adding this to the address of the base of the array
produces an address that is within the array, the access is deemed legal;

- One of them does an optimization on subscript checking: if the subscrip t is the
index of a do loop, the checking is done on the bounds of the do loop at loop
Initialization time rather than when the array is actually accessed.

In this case the principal barrier to comparability of the results was the differences
between the languages. Four different versions of the program wore used, of course.
The authors’ philosophy in writing versions for the different languages was that every
attempt should be made to take advantage of the characteristics of each language.
(The opposing philosophy is that the versions should look as much like each other as
possible). This is a user ’s idea of comparabilit y ra ther than an implementor ’s; it
compares the costs , on the different systems , of doing some particular task , rather
than of using some particular common language feature. However , in certain cases the
authors’ attempt to take advantage of language features has had the opposite of the
intended effec t, i.e. they have taken advantage of a feature the use of which increases
program clarity or naturalness but degrades performance:

- The Algol 68 version uses flexible arrays for the coefficients , where the other
versions use arrays which are fixed in size at t he maximum. This means that the
Algol 68 version may save core storage (if the sys t em can give back the unused
storage to the operating system, a highly unlikely possibility), but it pays a
penalty in execution time.

- The Algol 60 and Algol 68 versions use variables local to the blocks in which they
are used; Pascal and Fortran do not allow this. This may be beneficial for the
performance of the Algol systems , but it may be detrimental , depending on the
implementation and on the relative frequencies of entering local blocks compared
with entering procedures.

- The Fortran version uses formatted I/O. Due to the necessity of interpreting
formats at execution time, Fortran formatted i/O is well known to be a source of
performance problems. For some reason the authors chose not to use formatted
110 in the Algol 68 version.

- On the other hand, since every output statement in Fortran starts a new output
record, if several numbers are to be output in one record , they must all he output
in one statement. Thus the authors have a buffer in the Fortran version to hold a
line’s worth of coefficients , and the whole line is output at once; in the other
systems each coeff icient is output separately. Thus a deficiency in Fortran leads
to a performance benefi t for the Fortran version.

8



- In the Algol 68 version, the procedures which multip ly and divide polynomials are
represented as operators which take arrays as arguments and return arrays as
values. The other systems do not allow procedures to return arrays as values.
Unfortunately many systems do not make any effort to avoid copying arrays back
and forth when they are passed as parameters c~ returned as procedure values,
and so this practice may cause grave performance problems with such systems
([23)). The authors, apparentl y recognizing this problem, have coded the
operators to pass around references to arrays rather than the arrays themselves ,
but the extra level of indirection at every array access somewhat degrades
performance as well.

This illustrates the pitfalls involved in even the most reasonable and conscientious
policy of transcription from one language to another. Nevertheless the performance
fi gures arrived at are illuminating, even considering that the benchmark program r~iay
not in any way be representative of most user programs.

The authors use another benchmark task for more extensive testing of I/O
perf ormance; in this case the•program simply copies the first 200 lines of one file into
another. There are several very different ways to do this on each system and each
way was tested; for instance:

- There are three Algol 68 versions: one does character at a time I/O, another does
line at a time i/O, and the third “pretends ” to do character at a time I/O but
internally keeps buffers and does string I/O, a technique which a casual user of
the Cyber 73 Atgol 68 system might use because of the high overhead associated
with every call of the system I/O.

- There are two Fortran versions: one uses format 80A 1 to read lines of eighty
characters; the other uses format 8A10.

This is strictly a user’s comparison; no attempt is made to further analyze the
results , or to take any especial care in making the programs identical.

Curnow and Wichmann ([11]) have attempted to address some of the weaknesses of
the basic statements benchmark by designing a “synthetic benchmark ” program (see
[12]) -- a program carefully designed so that its requirements f or various system
services matched those measured for the average workload of a system. In this case
the “system services ” were defined in terms of the types of interpreter instructions in
the intermediate-level code generated by the Whetstone ((13)) system. The problems
attacked by this program are:

— The structure of the basic statements program was such that an “eptimizing
compiler ” could render its measurements useless. The synthetic benchmark is
coded carefully to be almost immune to the classical optimizations of flow
analysis; this is probably bending over too far backwards , however , because mos t
user programs of moderate or greater complexit y are affected in their
performance when these optimizations are performed. More importantly, the

9
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basic statements benchmark could be rend ered less useful by a compiler which
took advantage of its simple structure to do most computations in last registers; it
is hoped that the more “natural ’ appearance of the synthetic benchmark will
result in register allocat ion being more normal in the code compiled for it.

— Some of the basic statements , such as the array accesses using constant
subscripts mentioned earlier , were unusually simple cases of the language
features they were intended to represent. It was hoped that this viould be
corrected in the synthetic benchmark. Presumabl y, however , this would be no
more beneficial than correcting them in the original basic statements benchmark.

— The authors say of the basic statements benchmark that ‘... it was not always
easy to obtain in one program sufficientl y accura te processor times (for the 42
basic statements) ...‘ It is not clear , however , that the synthetic benchmark
corrects difficulties that may have arisen in this regard. A run of the program
yields only one performance figure, a sys tem speed in pseudo-
instructions/second, rather than 42. The fact that all the inaccuracies of timing
have been swep t together does not mean that they have been reduced.

The synthetic benchmark is run on several systems on two computers , and is
compared, as a measure of machine speed, with three other programs: a similar
benchmark written in Fortran, the basic statements benchmark , and a Gibson mix ([14))
of instructions. The Fortran benchmark and the Gibson mix arc shown to be closely
correlated to each other , but not closely correlated with the other two, which are in
turn closely correlated to each other.

1.4. Summary

We have seen that apples can, indeed, be compared with oranges. In fact , as the
experience with the basic statements benchmark and the procedure calling benchmark
has shown, implementors and maintainers of systems will go to infinite lime and trouble
to prepare their systems for comparison with c’ther systems , no matter how little
useful information they stand to gain from the comparison!

If we draw a distinction (also see [12)) between “user ’s” comparisons , which are
intended to help potential users of systems choose between them or judge oi their
rela tive speeds, and “implementor ’s” compar isons, which assist the implementor of a
system in pinpointing its strengths and weaknesses , we can better understand this
phenomenon: the procedure call benchmark , which is poorly designed as an
implernentor’s comparison, is ideal as a user ’s comparison because of its simplicity and
narrowness of scope, and has therefore become phenomenally popular.

The future of implementor ’s comparisons may well be in doubt. We have seen that
even in a group of fairly old Algol 60 implementations , the “basic statements ”
assumption was beginning to come under question because of optimizing compilers;
more modern compilation techniques, including dynamic storage allocation and systems
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for avoiding the copy ing of large values , have made it even more difficult to find
corripartrr~cntal izations of program execution costs that can be easil y reflec ted as
individua’ source language constructs or program fragments. Perhaps as the virtues of
or thogonal language design become more widely rec ognized, and the use of these
techniques in language systems becomes more routine, it will become much less useful
to system implementors to try to compare the performance of such systems on a
feature -by-feature basis.

11
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2. Analytic evaluation

The cri teria and methods for selecting programs to run in order to study a language
system are different , when the system is being studied in its own terms , from wha t
they are when it is being compared with other systems. We saw in the previous
section that the central part of the design of a comparative study is the design of a
“benchmark program”, a single program wh ich can be run identically or at least
comparably on several systems. Non-com parative studies of language systems , on the
other hand, have generally attemp ted to get data from runs of a wide variety of
programs; these studies are really getting data on the workload faced by the system
as welt as on the system itself , and the more programs which can be run, the smaller
the chance of getting a distorted picture of the workload due to the accidental
peculiarities of a few programs. The criteria for choosing test programs are not
always the same:

- Knuth ([15]) sought a group of programs which would be “t ypical” in some sense
of the entire computing load of the Fortran system under study. The criteria by
which typicalness was judged were

— The average level of sophistication of the programs should not be &oo far
from the universal average;

- There should be programs wri tten for many different applications in the
sample. He did not attempt to control the proportions of each type of
application included.

- Clark ((22]) sought a group of programs that would not be “average ” in any
sense, that is, programs distinguished for their largeness , comp lexit y, and
sophisticated use of list structure . The principal justifi cation for this is tl’at , if
regular patterns of activity or accessing are found in the Lisp system’s treatment
of these programs , they will be applicable to smaller programs as well; whereas
peculiarities or other patterns may be found in a set of smaller or “t ypical ’
programs , which disappear for the large and sophisticated applications . Note that
Lisp is not the standard language for applications programming at many computer
installations, and it is still more important to improve the performance of Lisp
systems on large, sophisticated programs than on small ones; the Fortran system
which Knuth studied, on the other hand, faced a daily workload in which large ,
sophisticated programs played a very small part.

Other authors were less explicit about the criteria by which test programs were
selected; we suspec t that the temptation to use whatever programs are handy is very
str ong. The nature of the set of sample programs depends to some degree on how
they are collected:

— The most reliable method for getting a set of sample programs that is “typical” of
system usage is to gather data on every program run on the system over some

L 
period of time. Unfortunately this is riot usually possible. Many of the data
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gathering systems we will describe slow down the execution of programs by so
much that it would not be acceptable to impose them on all users or even on a
random selection of users of the system.

- Knuth describes a method of getting programs by “... rummaging around in
wastebaskets and recycling bins”. However , a disproportionate number of
programs gotten this way are incorrect , indeed uncompilable. While this would
not be a bad method of getting data on the distribution of types of errors , it is
inappropriate for a study of programs which are actually executed.

— It is possible to solicit programs from their authors. This can be done as in 122)
when there is a small group of potential authors of usable programs; or when
there is a central facility, such as a card reader , which all programmers must use
to submit programs to be run. This method has the advantage that incorrect
programs can he weeded out, and if the programs are complex and have non-
trivial requirements for input data, these can be described and documented by
the programmers. Alexander ([17]) used a number of programs which were
available because they had been submitted for a course in compile.r writing. -

Note that with this method, and indeed with any method except the first one, we
get only a group of test programs , with no information about how often they are
run, either in absolute frequency or relative to each other. If we are interested
in the average workload of a system, our idea of it is incomplete unless we have
some sense of the relative proportions contributed by var ious types of programs.

- On computer systems in which programs can be stored in a file system for long
periods of time, it is possible to rummage around in the file system to find
suitable tests. This has the same disadvantages as rummaging around in
wastebaskets , but in considerably less aggravated form, i.e. one is likely to find a
larger proportion of programs which actually run.

— The programs most easily available are “system programs”, e.g. compilers , or
“classica l benchmark ” programs, e.g. programs from subroutine libraries, or
programs used to test the correctness of the compiler or the run-time system. Of
course, whatever their merits, these programs are unlikely to be typical in almost
any respect of the workload presented to the system.

There is a spectrum of usage characteristics which affect system performance , from
those which can be studied without the slightest reference to the organization of the
language run-time system, to those which cannot even be expressed without drawing
on the reader ’s familiarity, either with language run-time systems in general , or the
particular system under scrutiny. We will examine a group of studies that span most
of this spectrum, pointing out the data gathering techniques used in cases where they
are novel, and describing the types of results which were obtained and how they could
be put to use, although not in most cases the actual results themselves.

13
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2.1. Knuth

Perhaps the best-known study of language usage patterns is by Knuth ([15)). Part
of this is a study of static usage, i.e. of relative frequencies of features of source
programs , rather than frequencies of events at execution time. There have been
several more studies of this type (see (16)); as a rule they are of little interest to the
subject of execution-time performance. However , many of the measurements reported
by Knuth could have been extended to dynamic measurements; they were not,
apparently only for lack of time. For instance:

- All Fortran statements can be classified by “statement type”, determined by the
keyword at the beginning of the statement (e.g. do, continue), except for
assignment statements , which were classed as a separate type. The frequencies
of the various statement types were counted, with assignment statements being
by far the most common, and if and goto statements having far lower frequencies
but still being far ahead of other types.

— Various special cases of certain statement types were also counted:

- Assignment statements of the simplest possible kind (e.g. a b in which b
has no arithmetic operators or function calls) were counted, as well as
assignments of the form a. — a <op> c.c, i.e. those in which the first operand
of the source is the same variable as the destination; there exist instructions
in many computer instruction sets to make the latter kind of assignment
easier to perform than the more general case, if a compiler can take
advantage of them. (A large majority of assignments were of the simplest
possible kind)!

— Several special cases of arithmetic operations were counted, as well as
occurrences of each different operator: ~ + 1, u~ * 2, c~ / 2, o~ ** 2. These
also are easier to perform on many machines than the general cases of
addition, multiplication, division, and exponentiation.

— Indexing was examined: the occurrences of variables with no subscripts, one
subscript , two subscripts, three subscripts and four subscripts were counted.
(About four percent of occurrences of subscripted variables involved more than
two dimensions),

- The percentage of do loops using the default increment (one) was measured; and
do loops were classified by their length in statements. This tast measurement is
vaguel y useful to designers of hardware instruction-fetch buffers , although the
great variability of the number of instructions generated for each Fortran
statement by any compiler makes it highl y imprecise.

14



Some dynamic measurements were made, by means of a preprocessor. This progra m
associated a separate counter with every statem ent in a Fortran program, and added
statements to the program to increment each counter when its associated statement
was execu ted, and write the counters out to a file. The breakdown of statements by
type, and the breakdown of assignment statements by special cases , were repeated;
the dynamic figures showed some significant differences from the static figures. (For
instance, the percentage of assi gnment statem ents which were simple replacements
dropped fr om 45Z to 357).

The usefulness of these findings to the design of language support systems is clear.
Armed wit h a knowledge of . what special cases are likely to occur often, and just how
often they occur , the compiler designer (and perhaps also the run-time system
designer as well) can make intelligent choices about how code should be generated.
We shall see that this kind of knowledge is one of the most useful results of the kind
of studies we have examined.

Knuth also makes use of a sampling program to do measurements of actual time
spent in portions of the program, rather than frequency counts. This is done by means
of a program which, being a superlask of the user program, can interrupt it at regular
(or random) intervals and inspect its status. In this case the samp ling program looks
only at the program counter; with more detailed knowledge of the Fortran run-time
system, ot her interesting data could have been gathered as well.

The sampling program (PPOGTJME) does not have the guaranteed accuracy of the
frequency count system, of course, but it does provide otherwise unavailable
information. For instance, Knuth finds that one program spends 70?. of its time in two
system routines which were involved in input/output editing, although the frequency
counts of the source lines which called them were not so high. PROGTIME prints out ,
normally, a histogram in which each successive interval of 8 words is represented by a
bar indicating how often the PC was found there. A much less primitive system would
be more useful to users and imptementors alike: the addresses should be related to the
names of subroutines and functions in the source code, or (even better) to individual
line numbers. This, of course, involves some cooperation between the compiler and
the sampling program.

2.2. A lexander

Alexander ((17]) studies the XPL system; XPL us a language primarily intended for
the implementation of compilers. The raw data obtained are counts of instruction
executions , and other information about execution at the instruction level, and thus are
useful for evaluation of the System/360 instruction set as well as of the XPL run-time
system.

Two methods of gathering data are used; since both of them are very expensive in
terms of computer time used, only a limited sample of test programs was studied. The
methods are:
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- Complete interpretation. Instead of running the compiled program directly on the
9/360, it is given as input to a program which interprets the S/360 instructions
one at a time. The original interpreter printed a line of dat a for each instruction
executed; clue to the great expense of either tabulating or printing the volume of
out put so produced, Alexander chose to m odify the interpreter , to tabulate only
t~ e information desired. It took about 200 times as tong to run a program on the
interpreter as to run it directly.

— Jump tracing. This technique (also see [18)) is a useful compromise , which is not
as costly as complete interpretation, but cannot furnish quite as much information,
and requires some assistance from the (XPL) compiler. The idea is that straight—
line sequences of code are executed at machine speed, but before each branch
instruction an instruction is inserted which increments a counter uniquely
associated with that branch instruction. Since this instruction must be
transparent (i.e. it must not alter the condition codes or registers) and should
occupy only a few bytes (because of the lack of addressable core storage), an
interrupt instruction was used; the time required by the interrupt handler was
fairly high, and a progr~m runn ing with jump tracing took about 44 times as long
as the same program running without tracing.

After the program has finished execution the counters are written out to a file. A
separate f ile has been written by the compiler , containing the information
associated with each branch instruction: the instructions in the straight—line code
sequence w hich precedes it and the registers which they use. Subsequent
manipulation of the two files can yield much of the same information about
register and information usage which was provided by complete interpretation.
Clearly much information is missing, as Alexander points out:

— Information about register contents is lost; thus information about the
addresses and lengths of data accesses cannot be gathered. Moreover ,
information about condition codes is lost as well.

- The order of the branch instructions is lost; only their counter values are
retained. Wi th complete interpretation, Alexander was able to tabulate the
frequencies of execution of various pairs and triples of opcodes; but when
one of the opcodes is a branch, this information is lost by jump tracing.

Nevertheless jump tracing is a useful technique for gathering performance
information. We shall see a similar technique in the discussion of the CMU Algol
monitoring system.

H The figures which were computed which are relevant to system performance are:

- Relative frequencies of execution of the various opcodes. Frequencies of pairs
and triples of opcodcs were also recorded. This information was also gathered
statically, i.e. frequencies of occurrence in the object code, rather than of
execution, were computed, for comparison.

- Frequencies of use of the various (16) registers . Any instruction may use a
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reg is ter either as an arithmetic accumulator , or as a base or indexing reg ister;
these two types of use were counted separatel y.

Other data were recorded, but those were relevant to the evaluation of the Sf360
instruction set , and not to the evaluation of the run-time system. By relating the
f i gures described above to patterns that are known about code generation by the XPL
compiler and the coding of the run-time support routines, Alexander was able to draw
some conclusions about deficiencies in and potential improvements to the system. For
instance:

— 13?. of the instructions which were executed were instructions to load a base
register , immediately prior to using the base register in a branch instruction. This
extremely high percentage reflects badly both on XPL’s handling of base
registers , and on the architecture of the S/360, which forces the use of registers
rather than the program counter for base addresses.

— The N (logical AND) instruction occurs in the string concatenation support routine,
and is also generated for condition testing (presumably for the logical AND
operator of the language). Its high dynamic frequency of execution , especiall y in
contrast with its low static frequency, indicates that string concatenation is a
frequent operation. On the other hand, the low use of register 13, which is used
to address all character—string descriptors , at least in comparison with registers 4
to 11 which are used to address the rest of the data area used by a program ,
leads the author to conclude that “string manipulation is not a major feature of
the XPL language”. Further study would be needed to reconcile these two
observations.

— Registers 1, 2, and 3 are used, in that order , as a “st ack ” of accumulators to be
used for ordinary arithmetic operations. The sharp decrease in dynamic
frequency from Ri to R2, and from R2 to R3, confirms Knuth’s data tndicating that
expressions tend to be simple.

— Registers 2 and 3 are used as index registers for array accesses. The dynamic
frequencies of instructions which use them as indexes are substantially higher
than their static frequencies, leading to the (rather trite) conclusion that array
accesses tend to appear more often in loops than outside them.

— Register 15 is reserved as a base register for calls to XPLSM, the “submonitor ”
which performs I/O for XPL programs. Its extremel y tow static and dynamic
frequencies indicate that in this role it is underutilized, and the extra cost of
loading it with the base address for XPLSM before every I/O calf would be offset
by the benefits of havit~g the register available for other purposes most of the
time.

- We have mentioned the high incidence of the L instruction, which is used to load
up a base register for a branch instruction. The analysis of instruction pairs
indicates that a wide variety of instructions are frequently preceded by L
instructions; this suggests that the XPL compiler does not take enough care in
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code generation to save temporary results in registers , to render subsequent
register loading instructions unnecessary.

Probably this is only the tip of an iceberg of useful or at least interesting
information that could be deduced from the statistics about opcode and register usage,
and other fi gures that could be tabulated by the interpreter . Here again, however , we
are limited by the lack of communication between the data gathering program’~ and the
compiler or run-time system; instead of simp ly knowing how often the string
concatenation routine is called, we must deduce it approximatel y from the frequency of
a rare instruction that it executes. We have no handle at all on some of the other run—
time support routines, or other characteristics of t he code which are not reflected in
opcode or register use frequencies.

A study closely related to Alexander ’s, but using a different computer , can be found
in W ortman ([28]). This involved a computer specificall y designed to execute programs
in a dialec t of PL/!, and the data on frequencies of opcodes were fed back directl y to
the machine design.

2.3. Batson et aL

Batson et at. ([19J,(20]) have studied an aspect of program behavior that has
received little systematic observation, namely, the allocation anL freeing of storage.
This is in the context of the Burroughs B5500 system, in which segments are allocated
by requests from the operating system both for program code (one segment per
Atgol6O block) and for array storage (One segment per row of every array). Actually
the second study ignores this structure; “virtual ” storage requests are recorded, as if
each entire array were allocated one segment , and the group of simple variables
declared in each block were one segment.

[19] studies the size distributions of various types of blocks, including free blocks.
This study is unique among those in this chapter because there was no selected
“samp le” group of programs; the entire workload of the Algol 60 system could be
studied by suitably instrumenting only the operating system, and indeed since 90?. of
the workload of the whole system is (Burroughs Extended) Algol 60, the computer
system as a whole forms a highly unusual “laboratory” for study ing a single language
system. The data could be gathered simply by interrupting the system for about one
second every so often (usually every two minutes), a performance degradation that
was evidently acceptable to, or even not noticed by, users. Since all blocks were
linked together in memory, the data gathered and written out during the one-second
interrupt is just a list of the links, gotten by scanning linearly through memory. The
operating system did overlaying of memory onto secondary storage in units of one
segment , and it was suspected at one time that the distribution of sizes of demands for
segments might be appreciably different from the distribution of sizes of segments in
memory, possibly because segments of particular ranges of size were more frequently
overlaid. An altered method of gathering data, that would give a bette r estimate of the
dis t ribu t ion of demands, was devised: the memory would be flushed (all segments

18

___________



wr i t ten out to secondary storage); then, some short time later (about 10 seconds), long
enoug h to allow a “reas onable” number of segment requests but before si gnificant
overlay ing had begun again, the usual 1-second data gathering process was onducted.
(it turned out , however , that the equilibrium segment size distribut ions were not
si gnificantly different from the segment demand size distributions).

Distributions were measured for several different kinds of blocks , including free
(unallocated) blocks. There are several observations of interest to system designers
about these distributions:

— They are peaked very sharply (non-exponentially) at small sizes, with the
average segment size ranging from 50 to 150 and the median segment size
always considerably smaller. The authors point out the unfavorable consequences
of this to systems with pages of large fixed size (e.g. 512 words), which are
common today.

- The distribution for free blocks was very similar to those for the various types of
allocated blocks , indicating a great deal of “checkerb oarding” or external
fragmentation , presumably a consequence of the design of the dynamic storage
allocator used by the operating system.

— The distributions changed in appreciable ways when all allocated bloc-ks
generated by “system programs ” (i.e. three compilers , and the operating system
(Master Control Program) were deleted from the data; the peak for small sizes is
much sharper. In this case two thirds of all allocated blocks were less than 30
words in size.

As described earlier , the second study was concerned with a hypothetical scheme of
storage demands; in addition, it was desired to gather more data than we re available
from a simple inspection of segments in memory. Therefore , a number of changes
were made to the Algol 60 compiler , the operating system, and even the system
hardware to support this experiment, and it was run, not using the daily system
workload, but on a set of 34 programs , descril,ed as production programs for
scientific/engineering applications, covering a wide range of sizes and memory
requirements for storage and time.

The compiler was modified to produce code to record the occurrence of events such
as block entry, array declarations , and initiation of 1/0; the the hardware was modified
to include a 1-MHz clock with which the events could be time-stamped; and the
operating system was modified to prepare records of the events which could be
written onto an external device, and also to record certain events which were outside
the abilit y of the compiled code to instrument. The compiler also generated a file of
names connecting the events recorded with various features of the source code.

Static and dynamic distributions are presented, of array segment sizes , contour data
(i.e. simple variable) segment sizes , and program segment sizes. In addition,
distributions of the lifetimes of the various segments are given, using absolute lifetimes
and lifetimes normalized by dividing them by total execut ion times of the programs.



These distributions have been used to generate stochastic inputs for measuring the
behavior of dynamic storage allocation systems by Weinstock ((213).

, 2.4. Clark

Clark ((22]) has studied the use and behavior of list structure in (large) Lisp
programs. This investi gation can only be described as extremely successful , resulting
in a wide variety of interes ting and useful results, and if is worthwhile to consider
what aspects of the methodology or of the system being studied enabled this to
happen.

Clark draws a distinction between measurements of snapshots of program execution,
called “static ”, and measurements on traces of execution , called “dynamic ”
measurements. (Earlier we have used “static ” t o refer to measurements on source
pr ograms , a different distinction). Each of the five large programs in the samp le was
allowed to run on a task that was long enough and complex enough to cause storage to
be garbage-collected and reused several times; at the end of the run, static
measurements were made by another program which traversed most (not quite all) of
the list structure created by the test program up to that point. Dynamic data were
gathered by means of a POP-lO simulator , w hich wrote a trace file with an entry for
every instruction executed.

The meaningfulness of both the static and dynamic data was enhanced tremendously
by knowledge of the data type associated with every pointer in memory. In the
Interlisp system studied, this information was particularly easy to obtain, since each
page of the address space was devoted to objects of a single data t ype, and the
correspondence between pages and types is available in core during execution.

The problem encountered in the study by Alexander (discussed earlier), that the
data gathered by the simulator was hard to relate to the run-time support routines
and other primitive actions, was gotten around in this study, by an extraordinarily
fortunate circumstance. Each of the important primitive actions studied by Clark (car,
cdr , rplaca, rpkicd, cons) is associated with an instruction which is only, and always,
execute d once by it (respectively, these were hrrz, hir?., hrrm, brim, and pop). This
correspondence is bqually true whether the Lisp code is compiled or interpreted. It is
likely that if , as Clark recommends, the higher-level list -manipulating functions of Lisp
are studied in the same detail, data gathering tools more sophisticated than a PDP—10
simulator will be required.

Dynamic measurements were expensive to make: running a program on the PDP-10
simulator took about 60 times as tong as running it directly on the PDP-1O. Therefore ,
most dynamic measurements were made on some subset of the five programs , runn ing
on relatively small tasks. Some of the dynamic measurements that were made
correspond to analogous measurements that were made statically:

— There was a static ~ctassificat ion of pointers according to data types of both
source and destination. Figures for car pointers and for cdr pointers were kept
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separate. (As an examp le, the fact that cdr pointers , in all five programs , point to
list structures about three t imes as often as to nit indicates that the average
length of lists is about four cells). The corresponding dynamic measurement was
a classification of all references to list structure by the data type referenced.
Clark observes that although the static classifications look very similar in all five
of t he programs used, there is not nearly the same regularity in the dynamic
patterns , nor close similarity between static and dynamic patterns for each
program.

— “Distances ” of pointers , that is, the difference in addresses between the cell
containing the pointer and the cell pointed to (if both are list cells), were
tabulated. It may not be immediatel y clear why these fi gures would be non-
random, or why they would be useful. In fact these distances tend to be very
small: the distance 1 is by far the mos t common for both car and cdr pointers , and
for both backward (negative difference) and forward pointers , and the number of
pointers in any range of distances drops off approximatel y as the logarithm of
distance increases. This can be explained by a coh~bina1ion of two con~iderations:
first , that cells created by successive calls of cons are frequently connected by a
pointer , and in general many pointers are between cells which were created very
close to each other in time; and second, that cells created near to each other in
time are likely to be near to each other in space as well. This is especiall y true
at the beginning of execution , or just after a garbage collection, when successive
cons’s are likely to be adjacent cells; the list of free cells is kept in order of

• addresses.

The f igures on pointer distances are interesting from the point of view of
performance for two reasons:

— The possibilit y of a compact encoding of pointers based on distance is
tantalizing. Clark discusses several schemes built around the notion that a
list pointer could be represented as an offset from the address of the
pointing cell, rather than as an absolute address.

— It is beneficial to the performance of a paging system if lists of cells tend to
be cells that are close together , i.e. on the same page. The Interlisp system
uses a non—trivial algorithm to find a cell to use f or a cons, directed at
getting the cell created to be on the same page as the cells to which it
points. Clark examined the usefulness of this algorithm, by substituting for i t
a simpler algorithm which simply tried to put each cons on the same page as
the most recent previous cons, and redoing some of the static measurements
of pointer distances. The results suggest that the more sophisticated cons
algorithm makes little difference to the page-locality of pointers.

Dynamically, the distances of references by car and cdr were tabulated, giving
distril,utions that were not different in interesting ways from the static
distributions.

- The notion of compact encodings can be applied to atom and number pointers as
well, and the frequencies of pointers to the various atoms and of occurrences of
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numbers were tabulated, with the idea of investigating the usefulness of
frequency-based encodings of these data types. Among other interesting
characteristics of these distributions was that atom pointers approximatel y
followed Zipf’s law: the number of pointers to the nih most popular atom was
proportional to 1 I n. The dynamic distributions were markedl y different from
the static distributions in this case.

Another group of measurements could only be macic dynamically:

- A measurement familiar to us from other studies, the simple tabulation of
occurrences of the five primitive operations, was done. For all three programs
for which this was done, over 807 of all executions of these functions were of car
or cdr; slightly more than half the rest were of cons.

— Occurrences of rplaca and rplacd were classified by the types of pointers
replaced and the types of the new pointers. (List pointers were sub-classified
according to their distances: “adjacent” pointers, “nearby ” point ers , and “distant”
pointers). This revealed some interes ting special cases: for instance , nil was
either the replacer or the replaced item in over 807 of the oc.currenc:es of rplac d
in two of the three programs , and over 607. in the third.

- Another kind of “distance”, the distance between two references defined by the
• number of references that occur between them in time, is of interest because of

the widespread use of two-level storage schemes. Clark has used the traces of
references to list cells as input to two models of memory management: a cache in
w hich each reference to a list cell causes it to be brough t in, and a cac he of
pages in which each reference to a list cell~ causes its page (512 words , as
defined by the TENF’~ operating system ) to be brought in, both using (for ease of
analysis) an LRU replacement a~gorithm. The figures relevant to hardware and
software system designers her e are the grap hs of “hit ratio ” (percentage of
references which are to pages already in the cache) against size of cache.

2.5. A general p~.~rpose monitoring system

A debuggingfanalysis facility has been included as a permanent part of the CMU
Algol 68 run—time system. This facilit y will be described here in some detail, to give
some understanding of the ccnsiderations which affect the usefulness, or lack thereof ,
of such a facilit y. We will ah.o describe several experiments which have been
conducted using it, and present some of the results from them. The system is
described in the terms of the POP-i I assembly language in which it is wr itlen, but the
same principles could be applied had it been implemented in any language with suitable
conditional compilation features. -

We defined by means of macros an “instruction”, mark , which could be placed
anywhere in a code sequence without affecting the execution of the sequence. The
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effect of a mark instruction is that of a subroutine call , except that actions of the
subroutine are comp letely transparent to the rest of the run-time system. Ordinarily
the effect of the subroutine is to increment a counter , associated uniquely with the
mar k instruction itself; thus at any point during program execution , it is possible to
find out how many times the mark instruction has been executed , by interrogating its
private counter.

This is the basic feature of the system. What makes it usa ble is the set of features
which keep the system out of the way of non-experimental users , and make the
counters easy f or experimental users to access and use. Any file containing a rn4&rk
instruction can be assembled so that the instruction assembles to nothing; there is also
som e run-time control over the counters, so that users can specify that the counter
subroutines will do nothing and take the fastest possible return (this is the default).
Each mar k instruction takes an argument which is a five-character name; the system
can be told at run-time to print the names of the mark instructions as they are
executed , and the current value of each counter has been made available, addressed
by its name , by using the symbolic debugger available to all 1-IYDRA users. Two
variants of the mark instruction, called enter and exit , are used to mark the beginning
and end of every significant subr outine in the run-time system; like the printing of the
names of the instruc tions as they go by, this feature is useful primarily for debugging
the system rather than for doing experiments.

This is a simple but very general and powerful system for investi gating patterns of
use of the run-time system. The usual procedure for doing an experiment is as
follows:

- Decide what events should be monitored, and wha t sections of code in the run-
time system correspond to each event.

- Put a m ark instruction with a suitable mnemonic name in each such section of
code (if there is not already an eflter associated with it).

- Assemble the necessary files and link together an experimental run-time system.

- Run the system on selected benchmark programs. At the end of a program run,
enter the symbolic debugger interactive system and set down the value of each
of the interesting counters. (There is also a feature for writing out all the
available co~inters to a file for later analysis, but we have not made extensive use
of this yet).

This system has certain inherent limitations; for instance:

- The information gathered is crude and limited in scope. For instance, we cannot
infer the relative patterns of usage of two or more routines, beyond knowing the
number of times each was called. If something . more complicated than
incrementing the associated counter is to be done at each mark instruction, a
facility exists for having an arbitrary routine executed at all such instructions , but
th is  is sufficientl y difficult to use that no such experiments have been done. Thus
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such information as freqpencies of pairs or triples of mark points, or tabulation of
the values of interesting variables at specific mark points, is not available.

— The counters are likely to overflow for tong-running programs. This is due to the
smal l word size of the POP-li. We could have made the counters two words
eac h; but this would have risked the possibilit y that the counters would not all fit
in core. This is due to the small address size of the PDP-lI , a closel y related
proble rn.

- Since the mar k instruction is reall y an interrupt instruction as in the study by
Alexander (described earlier), programs run during experiments using this system
are noticeably slowed down; we have observed differences of about a factor of
10 in the speeds of “marked” and “unmarked” programs. Therefore this is one of
those systems that cannot be let loose on the general user community;
experiments must be done on sets of test programs. On the other hand, the
factor of 10 is an order of magnitude less than the slow-downs observed in the
simulator systems described by Alexander and Clark.

To date, in addition to using this system as a debugging tool , we have used it in
three major studies of the behavior of user pro~rarns. To further illustrate the
strengths and weaknesses of the system, we will descnbe the studies in detail below.

2.5.1 Effectiveness of various optimizations

The following optimizations have been incorporated in the CMU Algol compiler and
run-time system:

— Although in Algol 68 the concepts of “variable ” and “pointer ” have been united,
the compiler distinguishes between them, and generates completely different code
for standard operations, such as dereferencing and assignation, on the two types
of references. This results in a substantial speed-up in the treatment of
variables for sonic ordinary operations, but there is a tradeoff: it is somewhat
more expensive for the user’s program to actually use variables as if they were
pointers.

- The run-time treatment of multiple values (arrays) is conceptually an extrem ely
elaborate system, designed to avoid the copying of large blocks of storage when
multiples or even slices of multiples are dereferenced , assi gned, or ascribed
during program execution. For instance, a matrix can be passed “by value ” as an
argument to a procedure call, without causing a copy of it to be made--unless the
system detects at some time during the execution of the procedure that a copy
must be made to preserve the semantics of the language. Obviously this kind of
system involves a tradeoff--a good deal of copying of arrays may be avoided,
with a substantial saving in execution time; or a program may require a lot of
array copying anyway, so that the overhead required to prevent copy ing is
wasted.
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We investigated the usefulness of these optimizations by measuring the frequencies
of various types of operations on variables arid pointers , and the frequencies of
various operat ions on multiple values which did or did not involve copying. The results
are described in some detail in [23], and so will not be further described here.

2.5.2 Behavior of the floating-point arithmetic subroutines

Since hardware to do the basic f loating -poi.it arilhmetic operations is a non-
standard option on POP-il’s, it was necessary to write software to do these. With a
view both to making improvements in these routines, and to fi guring out which portions
of them would be most usefully microcoded, we fully instrumented these routines,
inserting enough mar k instructions to allow the frequency of any possible strai ght -line
sequence of instructions to be measured.

The most interesting of these routines is the one to do floating-point addition and
subtraction. Before presenting the results that we have obtained, it is necessary for
us to give a description of the action of this routine:

Labels fadd and fsub are separate entries to the same routine; these are the entries
used by code produced by the compiler. This routine serves only to put its arguments
in suitable format for fxadd and fxsub, described below.

Labels fxadd and fxsub are separate entries to the routine that does the actual
floating—point computation; these are the entries used by code in the standard library

• functions, and by the routines to do complex arithmetic.

Shortcuts to the end of the routine are taken if either argument is zero. The
arguments are compared, and the one with the smaller exponent (if the exponents are
different) is put in a convenient location (an “accumulator ”). The fraction part of the
other one is shifted right by from I to 24 digits in order to be aligned properly for
the addition of the fractions; the shifting is done in the routine labeled shft. (shft is not
called if the exponents are equal). (This routine takes a shortcut if the exponents
differ by more than 24). The routine shft is complicated by the tact that shifts of 16
digits can be done In one instruction; thus a shift of ~5 digils is done by a shift to the

• left by one digit, followed by a 16 digit right shift. The fraction in the accumulator is
negated if the signs of the original arguments were different. The fractions are then
added to each other. The result is normalized, either by shifting it to the right by zero
or one digit if the fractions were of the same sign , or by shifting it to the left as
needed if the fractions were of opposite signs.

The results of the program runs are presented in figure 2. Each column represents
a single benchmark program; each row represents a single mark instruction, identified
by its five—character name at the left. The meanings of the mark instructions are as
follows~

• Name Circumstances of execution

addrz call of I add
subrz call of fsub
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adsbr call of either Ixadd or fxsub
adsb 1 2nd operand is nonzero
adsb2 adsbl executed , but 1st operand is zero
adsb3 1st operand exponent is smaller than

or equal to 2nd operand exponent
adsb4 signs of operands are different

(Note that subtraction has been turned into addition
by negating 2nd operand).

adsb5 result of addition of fractions is negative
(Note: see adsb3; exponents must have been equal)

adsb6 high order word of result fraction is zero
adsb7 adsb6 executed, and low order word of result fraction is nonzero
adsb8 result must be normalized by shift to the right

(Note: clearl y not executed if adsb5, adsb6, or adsb7 are executed)
shftz call of shft
shfti shortcut for very small argument taken
shft2 shift of more than 8 digits required
shft3 executed once for each digit of left shift
shft4 executed once for each digit of right shift
shft5 shift of from 9 to 16 digits required
norm 1 normalization shift distance is nonzero
norrn2 executed once for each digit of normalization

Alt three benchmark programs are standard matrix manipulation subroutines, taken
from [26]. Several interesting conclusions emerge from these fi gures:

- We might surmise that the normalization loop is the “inner loop” of the addition
process, but in fact for the additions in which both arguments are nonzero, the
average distance of shift required for normalization (calculated as the ratio of
norrn2 to (adsbl - adsb2)) is very low: less than one digit for each of the f irst two

• programs, and slightly more than two digits for the third program. A similar
• conclusion, though not such a strong one, can be drawn about the preliminary

shifting loop: for all programs, for additions where the exponents are not equal
and thus some shifting is required to align the fractions , the average distance of
shift is about two digits.

This is interesting because it implies that , in fact , the addition routine has no
“inner loop”. That is, we cannot hope to get a bargain in improving the

• performance of this process by, say, microcoding, or otherwise streamlining some
small portion of it. Moreover , the alignment and normalization loops should be
coded, not as “inner loops” are usually coded, to minimize the time per iteration,
but rather to minimize the time spent in loop initialization and exit , since the
number of iterations is usually so small.

— The alignment loop is conscientiously organized, as explaine d above, to take
advantage of t he ease of shifting the fraction by 16 digits at once. Considering
the small number of cases in which this advantage was realized (shf 12), ii is likely
that the overhead of detecting these cases is not worth the shifting that is saved.
(This hypothesis, of course, must be verified by actually calculating the overhead.
from inspection of the code).
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- The proportion of additions in which at le ast one operand is zero rangcs from
161 to 321, an unusually hi gh figure. II is also unusual that the first argument
tends to be zero substantially more often than the second argument. Both these
observations have consequences for the organization of the beginning of the
addition routine, where the two special cases are detected.

A study of floating-point addition closely related to this one can be found in [24).

2.5.3 Behavior of the dynamic storag, allocator

The foundation of the CMU Algol run-time system is a dynamic storage allocator
(OSA). This largely takes the place of the stack structure used for storage
requirements in other implementations of Algol-like languages. For instance, procedure
invoc ation frames , with space for local variables , back links to “outer ” invocations , and
other environment information, are not sections from a piece of memory organized as a
stack , but are gotten by requests to the OSA. It should be clear that the performance
of the storage allocator itself is critical to the performance of the system as a whole
(see E23]).

Early in the lifetime of the system we realized that the speed of the DSA was not ,
indeed, all that it should be, and we have sprinkled it with mark instructions in an
attempt to find out why. As with the last example , we will present some detailed
results , f or an appreciation of which it is necessary to explain in detail the action of
the DSA.

Using the notation of [21] for describing OSA strategies , our system is most closely
described by the quintuple: (Q(4,12), Q, R4, >.., (get ,L), X). Expanding on this notation,

- A (slightly modified) “Quick Fit” scheme is used to organize the class of free
storage blocks and to allocate blocks from it. For every size of block from 4 to
12, a separate list is kept , and when a block whose size is in this range is
desired, the corresponding “special size list ” is examined fi rst (with the
exceptions noted below). Only if the special size list is empty, or the block
desired is larger than 12 words, does the “general list” get searched (no blocks

• are smaller than 4 words). The special size lists are in LW O order; the general
list is maintained in UFO order, and searched for a “first fit”.

In fact this description is not entirely accurate . There are two entries into the
system for requesting a block, called gtbln and gtblgen. The first of these
requires (in effect) a block size from 4 to 12, and causes the free lists to be
searched as described above. The second of these requires a block size which
may be arbitrary, and causes only the general list to be searched. gtbln is used
when the size required from a block can be deduced from its “type”, i.e. the use
to which it is to be put. For instance , every multiple value is represented by a
block containing pointers to its descriptor and its elements, and all such “multip le
value” blocks have the same size. gtbtgen is used for blocks whose size is not
completely determined by their type; examples are invocation frames (since some
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procedures require more local storage than others), elements blocks of multi ples,
and descriptor blocks of multiples (since some multip les have more and larger
dimensions than others>.

Also, there is a separate storage allocation system for real (single precision
floating point) number blocks , with a separate special size list and a separate
entry, gtblroal. The only thing the two allocat ion systems share is a central
common pool of storage , the “free area ”. When any request for allocation fails
because blocks cannot be found on the appropriate free lists , a block of the
requested size is chipped from one end or the other of the “free area ”.

- When a block is found on the general list whose size exceeds that requested by
at least 4 words, the e~cess is split of f the original block and returned to the
appropriate free list. When the excess is less than 4 words, it is ignored (left
with the original block).

This also is not quite accurate. If gtbln is forced to search the general list , and a
block is found with an excess of less than 4 words , the block itself is ignored, i.e.
the search continues.

- No “rounding” is done; an attempt is made to get a block of exactl y the size
requested.

— Adjacent free areas are collapsed only when a request for allocation fails , i.e. a
block cannot be found on the usual lists~ and the size of the free area has gone to
zero. When this happens, a scan through memory finds all free blocks and
merges any of them that are adjacent to each other .

- No compaction (relocation of allocated storage) is done.

We can now describe some of the particular inquiries we made into the storage
allocation procedure. We inserted mark instructions as follows:

Name Circumstances of execution

coale call of coalesce, the routine to do collapsing of free blocks
gtblg call of gtblgen
gtbln call of gtbln
gtblr call of gtblroal
getf a call of getfarea, the routine to get a block from the free area

The following may be executed during a call to gtbigen:

gbglz executed once for each block examined on the general list
gbgaz a suitable block is found on the general list

- 
(i.e. it is not necessary to call getfarea)

gbgbz gbgaz executed, and the excess size of the block found is
too large to ignore (i.e. at least 4 words)

gbgcz gbgbz or gbnez executed, and the block made from the excess
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space is small enough for one of the special size lists

The following may be executed during a call to gibln:

gbnaz a block is found on the special size list (it is non-empty)
gbnbz executed once for each block examined on the general list

(Note: obviously this and the following instructions are not
executed when gbnaz has been executed )

gbncz a perfect fit is found on the general list
gbndz a block larger than the request is found on the general list
gbnez gbndz executed , and the excess space is large enough to be

separated from the block (i.e. at least 4 words )

The following may be executed during a call to gtblroal:

gbraz a block is found on the real-number list (it is non-empty)
gbrbz a block is gotten from the free area

We also inserted mark instructions in the storage deallocation routines, in order to
get a breakdown by block types of what blocks were being used. This information will
be mentioned below but not given in detail. Figure 3 shows the data gathered while
the storage allocator was being monitored. More programs were run  f or th is
experiment than for t he earlier ones, and there was a wider variety of them:

- hanoi is a program to solve the Towers of Hanoi problem a series of times , with
the size of the problem increasing each time (fr om 4 to 7 disks). Its activity
consists mainly of ca lls to the procedure print, as well as (recursive) calls to the
controlling procedure.

- rat? and rat2* are the same program operating on different input data. The
program does matrix decompositions of square matrices , not using real numbers,
but instead defining a structure to implement rational numbers and using matrices
of rationals. rat2 acts on matrices ranging in size from 1 x 1 to 4 x 4, before
aborting due to integer overf low. rat2s goes all the way up to 8 x 8 matrices. As
the table shows, its behavior is somewhat different from what simple
extrapolation from the behavior of rat2 would suggest.

— kiour finds and prints a bnight’s tour of an 8 x 8 chessboard.

- dot and Isquaro are real matrix manipulation program s mentioned in connection
with earlier experiments.

These data are extremely interesting from the perspective of try ing to estimate the
successes and failures of the current OSA system. Here are some of the points of
interest:

- Consider the average length to which the general list must be searched before an
appropriate block is found by gtbtg.n. To a first approximation , this is the ratio
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of gbglz to gtblg. Except for the two runs of rat2 , for which this ratio is less
than 5, the ratio ranges from 20 to 30. That is, it is in general necessary to
search the first 20 to 30 blocks on the general list , before one is found which is
large enough to meet the current request.

The behavior that this disastrous figure represents is called “fragmentation ”.
When a request for a medium-size block causes a large block on the general list
to be split , the residue block may be in any of several sizes. There is a range of
sizes that are too large to be useful on the special size lists , but too small to be
useful on the general list; blocks in this range simply hang around on the general
list with nothing t . do, clogging the front of the list with deadly effect.

— Now consider the spectacular successes of the current DSA system. The
percentage of requests to gtbln which are satisfied in just a few instructions , i~e.
for which the corresponding special size list is not empt y, is the ratio of gbnnz to
gtbln. This is never less than 90~ and seems to average about 95?.. The
corresponding ratio for the real -number list , for the two programs which use it , is
even higher (it is the ratio of gbraz to gtblr). Moreover , when the special size
lists do fail, the resulting search of the general list stops after about 1 or .2
blocks. (Blocks small enough to be on the special size lists do occasionally find
their way to the general list , e.g. elements blocks for small arrays , or blocks for
short strings). (The average search length is the ratio of gbnbz to (gbnaz - gtbln).
Thus the method of keeping special size lists , when it can be app lied, is extremel y
useful -- it can reduce storage allocation overheads to near their minimum values.

- The breakdown of block types, not presented above, yielded other useful
information. One type of block, the invocation frame , seemed to dominate the
others in frequency of use -- only for det and lsquaro was the number of
deallocations of invocation frames less than 407. of the total number of
deallocations (for these two programs the proportion was closer to 207.). ~or
those programs that used them at all, the other varying-size blocks (elem~~ts
blocks, descriptor blocks, structured value blocks, strings) comprised large
propor tions of the total allocation—deallocation traffic. For Instance , about 171 of
the deallocat ions done during ral2* are of structured value blocks.

A number of ideas for improving the OSA system have suggested themselves to us,
and we can use these data to make preliminary appraisals of them. The most
promising one appears to be the extension, to the maximum degree possible, of the
idea of “special size lists”. In the improved system these would not be limited to a
known set of sizes, fixed for all programs , as in the present system, but would include
lists tailored to the needs of each particular program. For instance,

— All invocation frames for a particular procedure are equal in size (since the
• number of arguments and the maximum potential requirement for local storage do

not vary from one invocation to the next); so each procedure has its own special
free list, from which frames for invocations of it are allocated.

- All instances of a particular structured mode have the same size; so each such
mode his its own free list.

30



r 
-
~~

-.——
~

•—
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— All descriptors for arrays of one dimension have the same size; similarly for
arrays of two dimensions, three dimensions, and so on. There are separate free
lists for descriptors for each of the first few (commonly used) dimensions;
descript ors for really high-dimensional multiples revert to the general storage
list.

In future documents we will report on the results of experimentation with this and
other improvements to the DSA system.

2.6. Summary

What can we learn, from these experiences , about methodology? What should a
system implementor do, and know, in order to have adequate tools for understanding
the behavior of a language system?

We have seen that machine simulators, such as the S/360 simulator used by
Alexander and the POP-b simulator used by Clark , are far from oeing adequate to the
purpose. They are prohibitively expensive to run on test programs of interesting size;
at the same time they cannot ordinarily gather all the information that is desired.
More sophisticated measurement tools will have to be devised, and they will have to
be designed along with, and into, the language systems themselves. A measurement
tool must “know” about the structure of the thing being measured. Events which are
significant at the source level (such as transitions from one statement to the next or
from one line to the next , procedure entries and exits , decision points in loops and
conditionals), and events which are significant at the implementation level (such as
entry and exit of run-time support routines, or even execution of arbitrary pieces of
code in the run-time support system), must be reflected to the measurement program
as events that it can record; the use of indirect event records , such as executions of
unusual instructions , can only be a stopgap measure.

We should also consider another problem which has not been solved by any of
these studies in an entirely satisfactory manner , namely, the selection of test
programs. As we have seen from several of the studies, different application areas
and even different programs within one area can show remarkabl y different
characteristics at execution time; and yet the selection of programs for the samp les in
these studies has been in all cases almost haphazard, and was not even discussed by
some of the authors. This is a subject that badly needs attention more serious than
that which it has so far been given. 

- - 
.
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Appendix A: Some basic statements benchmark results

Figure 1 presents the original list of basic statements from [4), with the Algol 68
equivalents for them that were used when the program was run on the CMU Algol 68
system, and the average ti~ne for each statement in microseconds. Of the identifiers
used in the various statements , z, y, and z are real variables initialized to 1.0, Ic, 1, and
,n are integer variables initialized to 1, el , e2, and c3 are integer arrays , and p0, p 1,
p2, and p3 are procedures which do nothing and return no result.

The nature of this table is such that it requires substantial commentary !

— The compiled code includes cal is to a “line number change” routine. These are
placed at various landmark points, e.g. between statement s and at the beginning
of loop bodies, whenever the compiler detects that the source line number has
changed since the last previous landmark point; the routine updates the record
kept at execution time of the source line number , as well as performing a few
other functions , such as checking for pending softwar e interrupts from other
processes in mull iprocess systems.

It was desired to make these timings without the calls to the line number change
routine. However , at the time the benchmark program was run, the compiler could
not be prevented from generating the calls , so the routine itself was patched to
return without doing anything.

— The times given certainly cannot be presumed to be as accurate as they are
given to be. Even the times for the simplest statements show some glaring
indications of error. For instance , the times for x := 1 and x := t differ by about
10 microseconds , although examination of the code for these two indicates that
they differ only in one addressing mode in one instruction, i.e. the times should
differ by not more than 2 microseconds . Earlier versions of these fi gures even
contained internal inconsistencies, e.g. the time f or x :~ y 1 2 was greater than
that for z :— y 1 3 although less code was e,cecuted for the former statement.
Internal inconsistencies are not an uncommon occurrence in the many sets of
fi gures obtained for this benchmark program on various systems.

- For some of the Algol 60 statements it was difficult or impossible to find Algol 68
equivalents:

- The semantics of oxponentiation in Algol 60 require that the for the
statement x :— y I z, the logarithm of y should be computed, and multiplied
by z; e should be raised to the power of the product to get the result. Thus
the logical Algol 68 equivalent of this statement , and the one used in [10], is
z :— exp (y * Liz (z)) . The equivalent used here, on the other hand, is
probably not a very good choice, since exponentiation to an integer power is
a completely different operation.

- The switch construct has no obvious equivalent in Algol 63, and we have
used the suggestion from the Revised Report on Algol 68 ([27]) of using a
procedure whose body is a case clause , to perform the equivalent function.
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Naturally this contraption is seldom seen in Algol 68 programs , making it a
- rather poor choice for a benchmark program.

— The Algol 68 operators sign and entier y ield integer values , and thus do not
• correspond very well to their Algol 60 counterparts . For instance , the time

for the statement x := sign y is dominated by the time required for the
conversion from integer to real.

As Wichmann points out , some of the statements are likely to take less time than
they would, if their inputs were more t ypical. For this system , the only unusually
low figure is for x :~ In (y) ; the natural logarithm function takes a shortcut for
arguments sufficiently clbse to 1.0.

- The following characteristics of the system make the raw numbers somewhat
more intelligible:

— All arrays are initialized when declared (all elements are set to an
“undefined” va lue that is recognized by the sys tem and can neither be
mistaken for a legal value nor arr ived at as a result of normal arithmetic
computation).

— Array address computations , and conversions from integer to real , anJ other
opera tions which, when their arguments are known at comp ile time , might be
done at compile time in some systems , are all done at execution time in this
system.

— Almost all operations- of any complexity, including most assi gnations in the
benchmark program, are done by calls of out -of-line subroutines. The only
noteworthy exception is that assi gnations involving integers (such as k I)
are done in line.

— The POP-il computers on which the test was conducted did not have
hardware to do floating point arithmetic , nor to do integer multiplication and
division.

— The times for the statements involving procedure calls are unusually high. Actual
instruction counts had led us to expect much smaller times. This was one of the
observations that led us to suspect odd behavior of the dynamic storage allocator ,
as described in section 2.5.3.
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Figure 1

Basic Statement Algol 68 vers ion time in microseconds

x :~ 1.0 x : 1.0 63.0
x : 1 x : 1 288.2
x : y x : y 64.5
x := y + a x :: y + a 448.3
x : y * a x :: y * a 539.4
x :~ y / z x :~ y / z 469.2
Ic :~ 1 k :~ 1 23.3
Ic :~ 1.0 Ic := ROUND 1.0 148.7
k :~ 1 + m k 1 + m 72.8
k. :: 1 ~ in Ic. :~ I * in 207.7
Ic :~ 1 DIV in k 1 % m 198.3
Ic. : 1 k :: 1 23.5
x :~ 1 x :~ 1 278.4
1 :~ y 1 :~ ROUND y 145.0
x :~ y ? 2 x :~ y t 2 909.6
x :~ y t 3 x : y ‘ 3 926.6
x :~ y t z x :~ y t m 245.4
el [ 1] := 1 el [1) :~ 1 465.2
eZ (1, 1] := 1 e2 [1 , 1) :~ 1 655.9
e3 (1, 1, 1] := 1 e3 [1, 1, 1) : 1 898.7
1 : el [1] 1 el [1] 379.3

BEGIN BEGIN 350.6
• REAL a; REAL a;

END SKIP
END

BEGIN (1:1] REAL a; 1958.8
ARRAY a(1:1]; SKIP

END

BEGIN [1:500] REAL a; 13369.8
ARRAY a(1:500); SKIP

END

BEGIN [1:1 ,1:1) REAL a; 2428.5
ARRAY a(1:1,l:l]; SKIP

END

BEG IN 
. 

( 1 :1 ,1:1,1:1] REAL a; 5417.8
ARRAY a[1:1,1:1,1:1]; SKi P

END

6010 x; 6010 x; • 1272.9
x : ;  x:SKIP;

BEGIN PROC ss = 2890 .75
(INT 1) VOID:

SWITCH ss := pq ; CASE i IN 6010 pq, SKIP OUT;
0010 ss (1); ss (1);
pq: ; pq: SKIP

4 
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END

x : sin (y) x : sin (y) 7280.1
x := cos (y )  x : cos (y) 7583.3
x :~ abs (y) x := A BS Y 103.5
x := exp (y )  x := exp (y )  6921.7
x : in ( y )  x := in (y )  2184.6
x : sqrt ( y )  x :: sgrt (y )  2531.5
x := arc tan (y)  x :: arc tan (y )  8456.0
x :~ sign (y) x := SIGN y 353.3
x :~ ent ier  (y )  x :~ ENTIER y 401.5

• p0 • p0 880.4
p1 (x) p1 (x) 1007.8
p2 (x , y) p2 (x , y) 1060.8
p3 ( x , y ,  z)  p3 (x , y, a) 1111.2

_ _ _ _ _ _ _ _  ~~~~—-~- - -



Figure 2

isquare det choleski
addrz 720 540 582
subrz  120 204 312
adsbr 840 744 894

adsbl 828 680 842
adsb2 119 176 176

actsh3 431 58 436
adsb4 296 140 481
adsb5 46 40 113

adsb6 3 0 24
adsb7 3 0 24
adsh8 157 120 55

shftz 554 446 413
shftl 0 0 0
s h f t 2  10 0 45
shft3  36 0 196
shft4 1097 933 818
shft5 7 0 40

norml 221 140 405
norm2 494 214 1425
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Figure 3

hanoi rat2 (let ktour rat2* lsquare
coale 1 1 1 1 20 1

gtbig 2853 1896 1349 1141 13554 1419
gtbln 3554 597 2061 353 2997 1195
gtblr 0 0 3529 0 0 4294
gtbip 2 2 2 2 2 2

getfa 223 219 194 170 255 198

gbglz 59002 11777 42221 40002 83834 43148
ghgaz 2632 1703 1180 985 13141 1245
gbgbz 633 999 754 622 9057 706
gbgcz 243 263 245 106 1798 227

gbnaz 3547 539 2025 332 2857 1158
gbnbz 7 82 54 28 203 50
gbncz 0 -6 0 0 26 0
gbndz 6 34 26 15 100 22
gbnez 6 27 12 9 88 14

• gbraz 0 0 3520 0 0 4276
gbrbz 0 0 9 0 . 0  18


